${y}_{1}={y}_{2}$
$35 {t}-\frac{1}{2} \times 10 \times {t}^{2}=35({t}-3)-\frac{1}{2} \times 10 \times({t}-3)^{2}$
$35 {t}-\frac{1}{2} \times 10 \times {t}^{2}=35 {t}-105-\frac{1}{2} \times 10 \times {t}^{2}$
$\quad-\frac{1}{2} \times 10 \times 3^{2}+\frac{1}{2} \times 10 \times 6 {t}$
$0=150-30 {t}$
${t}=5 {sec}$
$\therefore$ Height at which both balls will collied
${h}=35 {t}-\frac{1}{2} \times 10 \times {t}^{2}$
$=35 \times 5-\frac{1}{2} \times 10 \times 5^{2}$
${h}=50 {m}$