$E_1^o\, = \,0.15\,\,V;$ $\Delta G_1^o\, = \, - \,{n_1}E_1^oF$
$C{u^{2 + }}\, + \,2e\, \to \,Cu$
$E_2^o\, = \,0.34\,V;$ $\Delta G_2^o\, = \, - \,{n_2}E_2^oF$
On subracting eq.$(i)$ from eq. $(ii)$ we get
$C{u^ + }\, + \,{e^ - }\, \to \,Cu;$ $\Delta {G^o}\, = \,\Delta G_2^o\, - \,\Delta G_1^o\,$
$ - n{E^o}F\, = \, - \,({n_2}{E^o}F\, - \,{n_1}E_1^oF)$
${E^o}\, = \,\frac{{\,{n_2}{E^o}F\, - \,{n_1}E_1^oF}}{{nF}}$
$ = \,\frac{{\,2 \times 0.34 - 0.15}}{1}$
$=\,0.53\,V$
$Pt \left| H _{2}( g , 1 bar )\right| H ^{*}( aq ) \| Cu ^{2+}( aq ) \mid Cu ( s )$
$0.31\,V$ છે. આ એસિડિક દ્રાવણની $pH$ માલુમ પડી. જ્યારે $Cu ^{2+}$ નું સાંદ્રતા $10^{-x} m$ છે.તો $x$ નું મૂલ્ય $\dots\dots$.
(આપેલ: $E _{ Cu ^{2+} / Cu }^{\ominus}=0.34 \,V$ અને $\left.\frac{2.303 RT }{ F }=0.06\, V \right)$