\(\frac{{d[A]}}{{dt}}\, = \,2{K_1}\,{[A]_2}\, - \,2{K_{ - 1}}\,{[A]^2}\)
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $318 \,K$ પર ${N}_{2} {O}_{5}$ની પ્રારંભિક સાંદ્રતા $2.40 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ છે. $1$ કલાક પછી ${N}_{2} {O}_{5}$ની સાંદ્રતા $1.60 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ હતી. $318\, {~K}$ પર પ્રક્રિયાનો વેગ અચળાંક $.....\,\times 10^{-3} {~min}^{-1}.$ (નજીકના પૂર્ણાંકમાં)
[આપેલ છે: $\log 3=0.477, \log 5=0.699$ ]
$\gamma_{1} A +\gamma_{2} B \rightarrow \gamma_{3} C +\gamma_{4} D$
જ્યાં $v_{1}, v_{2}, v_{3}$ અને $v_{4}$ એ પૂર્ણાંક છે. $(i.e.$ $\left.1,2,3,4 \ldots . .\right)$
$10$ સેકન્ડોના અંતરાલ માં $C$ ની સાંદ્રતા $10\,m\,mol\,dm ^{-3}$ માંથી $20\,m\,mol\,dm ^{-3}$ માં ફેરફાર થાય છે.$D$નો દશ્ય થવાનો વેગ એ $B$ના અદશ્ય થવાના વેગ કરતા $1.5$ ગણો છે, ને $A$ ના અદશ્ય થવાના વેગ કરતા બમણો છે.પ્રાયોગિક રીતે $D$ના દશ્ય થવાનો વેગ $9,m\,mol\,dm ^{-3} \,s ^{-1}$ શોધવામાં આવ્યો.તેથી પ્રક્રિયાનો વેગ $\dots\dots\,\,m\,mol$$dm ^{-3} s ^{-1}.$
$2N_2O_5 \rightarrow 4NO_2 + O_2$ નો દર ત્રણ રીતે લખી શકાય.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
$k$ અને $k'$ તથા $k$ અને $k''$ વચ્ચેનો સંબંધ .............