\(\mathrm{I}_{\mathrm{g}}=\frac{\mathrm{V}}{\mathrm{R}+\mathrm{G}}\)
where, \(I \)\(_{g}\) - Galvanometer current, \(G-\)Galvonometer resistance
When shunt of resistance \(S\) is connected parallel to the Galvanometer then
\(\mathrm{G}=\frac{\mathrm{GS}}{\mathrm{G}+\mathrm{S}}\)
\(\therefore I=\frac{V}{R+\frac{G S}{G+S}}\)
Equal potential difference is given by
\(\mathrm{I}_{\mathrm{g}}^{\prime} \mathrm{G}=\left(\mathrm{I}-\mathrm{I}_{\mathrm{B}}^{\prime}\right) \mathrm{S}\)
\(\mathrm{I}_{\mathrm{g}}^{\prime}(\mathrm{G}+\mathrm{S})=\mathrm{IS}\)
\(\Rightarrow \frac{\mathrm{I}_{\mathrm{g}}}{2}=\frac{\mathrm{IS}}{\mathrm{G}+\mathrm{S}}\)
\(\Rightarrow \frac{\mathrm{v}}{2(\mathrm{R}+\mathrm{G})}=\frac{\mathrm{v}}{\mathrm{R}+\frac{\mathrm{GS}}{\mathrm{G}+\mathrm{S}}} \times \frac{\mathrm{S}}{\mathrm{G}+\mathrm{S}}\)
\( \Rightarrow \frac{1}{{2(R + G)}} = \frac{S}{{R(G + S) + GS}}\)
\(\Rightarrow R(G+S)+G S=2 S(R+G)\)
\(\Rightarrow \mathrm{RG}+\mathrm{RS}+\mathrm{GS}=2 \mathrm{S}(\mathrm{R}+\mathrm{G})\)
\(\Rightarrow \mathrm{RG}=2 \mathrm{S}(\mathrm{R}+\mathrm{G})-\mathrm{S}(\mathrm{R}+\mathrm{G})\)
\(\therefore \mathrm{RG}=\mathrm{S}(\mathrm{R}+\mathrm{G})\)
$\left(\mu_0=4 \pi \times 10^{-7} H / m \right)$