$M_X\,=\,\frac {3}{4}M_Y$ .... $(i)$
The relative lowering of vapour pressure of two solution is
${\left( {\frac{{\Delta P}}{P}} \right)_X}\, = \,m{\left( {\frac{{\Delta P}}{P}} \right)_Y}$
But, the relative loering of vaoour pressure of solutin is directly proportional to the mole fraction of solution.
Given $5\,molal$ solution , mans $5\,molal$ of solute are dissolved in $1\,kg$ (or $1000\,g$) of solvent.
The number of moles of solvent $=\,\frac {1000\,g}{M}$
The mole fraction of solution $=\,\frac {5}{1000/M}$
$=M\times \,\frac {5}{1000}$
hence $M_X\times \frac {5}{1000}$ $=\,m\times M_Y\times \frac {5}{1000}$ .... $(ii)$
Substitute equation $(i)$ in equation $(ii)$
$\frac {3}{4}\times M_Y\times \frac {5}{1000}$ $=\,m\times M_Y\times \frac {5}{1000}$
$m=\frac {3}{4}$