So, we get lengths of two open pipes as \(L _{1}=\frac{ v }{2 n _{1}}\) and \(L _{2}=\frac{ v }{2 n _{2}}\) Now the pipes are join in series.
Fundamental frequency of new open pipe of length \(L _{1}+ L _{2},\)
\(n =\frac{ v }{2\left( L _{1}+ L _{2}\right)}\)
\(n =\frac{ v }{2\left(\frac{ v }{2 n _{1}}+\frac{ v }{2 n _{2}}\right)}\)
\(n=\frac{1}{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\)
\(\Rightarrow n =\frac{ n _{1} n _{2}}{ n _{1}+ n _{2}}\)
$(a)$ $\left(x^2-v t\right)^2$
$(b)$ $\log \left[\frac{(x+v t)}{x_0}\right]$
$(c)$ $e^{\left\{-\frac{(x+v t)}{x_0}\right\}^2}$
$(d)$ $\frac{1}{x+v t}$