આ સ્થિતિમાં ટેલિસ્કોપ ના મેગ્નિફાઈગ પગાર \(MP\,\,\)
\( = \,\,\, - \frac{{{{{f}}_0}}}{{{{{f}}_e}}}\,\,\left( {1 + \frac{{{{{f}}_e}}}{D}} \right)\,\, = \,\,\, - \frac{{60}}{5}\,\,\,\left( {1 + \frac{5}{{25}}} \right)\,\, = \,\,\, - \frac{{12\,\, \times \,\,6}}{5}\,\, = \,\,\, - 14.4\)
હવે,\(\frac{1}{{{{{f}}_e}}}\,\, = \,\,\frac{1}{{{v_e}}}\,\, - \,\,\frac{1}{{{u_e}}}\,\,\, \Rightarrow \,\,\frac{1}{5}\,\, = \,\, - \frac{1}{{25}}\,\, - \,\frac{1}{{{u_e}}}\,\,\, \Rightarrow \,\,\,\frac{{ - 1}}{{{u_e}}}\,\, = \,\,\frac{1}{{25}}\,\, + \,\,\frac{1}{5}\)
\( \Rightarrow \,\,{u_e} = \,\, - 4.17\,\,cm\,\,\,\,\,\,\, \Rightarrow \,\,\,|{u_e}|\,\, = \,\,4.17\,\,cm\)
આ સ્થિતિમાં ટેલિસ્કોપની લંબાઇ \(L\,\, = \,\,\,{{{f}}_0} + |{u_e}|\,\, = \,\,60\,\, + \,\,4.17\,\, = \,\,64.17\,\,cm\)