\(\overrightarrow{ B }=\frac{\mu_0}{4 \pi} q \frac{\overrightarrow{ v } \times \overrightarrow{ r }}{ r ^3}\) and \(\overrightarrow{ E }=\frac{1}{4 \pi \epsilon_0} \frac{ q \overrightarrow{ r }}{ r ^3}\)
\(\mu_0 \in_0(\overrightarrow{ v } \times \overrightarrow{ E })=\frac{\overrightarrow{ v } \times \overrightarrow{ E }}{ c ^2}=\frac{(\hat{ i }+3 \hat{ j }) \times 2 \hat{ k }}{ c ^2}\)
\(=\frac{-2 \hat{ j }+6 \hat{ i }}{ c ^2}=\frac{6 \hat{ i }-2 \hat{ j }}{ c ^2}\)
\(\left[c=\frac{1}{\sqrt{\mu_0 \epsilon_0}} \Rightarrow \mu_0 \in_0=\frac{1}{c^2}\right]\)