\(\therefore \tan \phi=\frac{\omega L}{R}\)
\(\Rightarrow \omega L=R \tan \phi=200 \times \frac{1}{\sqrt{3}}=\frac{200}{\sqrt{3}}\)
Again, when inductor is taken out, the circuit is \(CR\)
\(\tan \phi=\frac{1}{\omega C R}\)
\(\frac{1}{\omega c}=R \tan \phi=200 \times \frac{1}{\sqrt{3}}=\frac{200}{\sqrt{3}}\)
Now, \(Z=\sqrt{R^{2}+\left(\frac{1}{\omega C}-\omega L\right)^{2}}\)
\(=\sqrt{(200)^{2}+\left(\frac{200}{\sqrt{3}}-\frac{200}{\sqrt{3}}\right)^{2}}=200\, \Omega\)
Power dissipated \(=V_{r m s} I_{r m s} \cos \phi\)
\(=V_{\mathrm{rms}} \cdot \frac{V_{\mathrm{rms}}}{Z} \cdot \frac{R}{Z}\left(\because \cos \phi=\frac{R}{Z}\right)\)
\(=\frac{V^{2} \operatorname{ms} R}{Z^{2}}=\frac{(220)^{2} \times 200}{(200)^{2}}=\frac{220 \times 220}{200}=242 \,\mathrm{W}\)