we know
\(k = \frac{{2.303}}{t}\log \frac{a}{{a - x}} = \frac{{2.303}}{{200}}\log \frac{{2.00}}{{0.15}}\)
\( = \frac{{2.303}}{{200}} \times (0.301 + 0.824) = 1.29 \times {10^{ - 2}}\,{\min ^{ - 1}}\)
[અહી આપેલ $\left.\log _{10} 2=0.3010\right]$
${A}+{B} \rightarrow {M}+{N}$ $......$ ${kJ} {mol}^{-1}$ બરાબર છે. (નજીકના પૂર્ણાંકમાં)
$\begin{matrix}
O\,\,\,\,\,\,\, \\
||\,\,\,\,\,\,\, \\
C{{H}_{3}}-C-OON{{O}_{2}} \\
\end{matrix}$ $\to$ $\begin{matrix}
\,\,\,\,\,\,\,\,\,\,\,O\,\,\,\,\,\,\,\, \\
\,\,\,\,\,\,\,\,\,||\,\,\,\,\,\,\, \\
C{{H}_{3}}-C-O\overset{\centerdot }{\mathop{O}}\, \\
\end{matrix}$ $ + N{O_2}$
જો હવાના નમૂનામાં $PAN$ ની શરૂઆતની સાંદ્રતા $5.0 \times 10^{14}\, molecules/L$ હોય તો $1.5\, hr$ પછી સાંદ્રતા કેટલી થશે ?
$(i)\,\,$ફક્ત $A$ ની શરૂઆતની સાંદ્રતા બમણી કરતા પ્રક્રિયાનો દર બમણો થાય છે.
$(ii)\,\,$$A$ અને $B$ બંનેની શરૂઆતની સાંદ્રતા બમણી કરતા પ્રક્રિયાના દરમાં $8$ ના ગુણાંકમાં ફેરફાર થાય છે.
આ પ્રક્રિયાનો દર નીચે પ્રમાણે છે.