(Assume $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=9.0 \times 10^{-31} \mathrm{~kg}$ અને $\mathrm{m}_{\mathrm{p}}=1836$ $x$ $\mathrm{m}_{\mathrm{e}}$ ધારો)
\(\mathrm{P}=\sqrt{2 \mathrm{mK}}\)
Hence,
\(\mathrm{K} \propto \frac{1}{\mathrm{~m}}\)
\(\Rightarrow \frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\mathrm{e}}}=\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}=\frac{1}{1836}\)
$\left(\mathrm{hc}=1240\; \mathrm{eV} \mathrm{nm}, 1\; \mathrm{eV}=1.6 \times 10^{-19} \;\mathrm{J}\right)$
${hc}=20 \times 10^{-26}\, {J}-{m}$, ઇલેક્ટ્રોનનું દળ $=9 \times 10^{-31} \,{kg}$
$\left({h}=6.63 \times 10^{-34}\, {J} \cdots\right.$, $\left.{c}=3 \times 10^{8} \,{ms}^{-1}\right)$