\(\therefore \quad \frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}\)
According to lens maker's formula
\(\frac{1}{{{f_1}}} = \left( {{\mu _1} - 1} \right)\left( {\frac{1}{\infty } - \frac{1}{{ - R}}} \right)\) \( = \frac{{\left( {{\mu _1} - 1} \right)}}{R}\)
\(\frac{1}{{{f_2}}} = \left( {{\mu _2} - 1} \right)\left( {\frac{1}{{ - R}} - \frac{1}{\infty }} \right)\)
\( = \left( {{\mu _2} - 1} \right)\left( { - \frac{1}{R}} \right)\) \( = - \frac{{\left( {{\mu _2} - 1} \right)}}{R}\)
\(\therefore \frac{1}{f} = \frac{{\left( {{\mu _1} - 1} \right)}}{R} - \frac{{\left( {{\mu _2} - 1} \right)}}{R}\)
\(\frac{1}{f} = \frac{{\left( {{\mu _1} - {\mu _2}} \right)}}{R};\) \(f = \frac{R}{{\left( {{\mu _1} - {\mu _2}} \right)}}\)