Differentiating both sides \(-\frac{1}{v^2} \frac{d v}{d t}=\frac{1}{u^2} \frac{d u}{d t}\)
\(\frac{d v}{d t}=v_l=-\left(\frac{v}{u}\right)^2 \frac{d u}{d t}=-\left(\frac{v}{u}\right)^2 v_0\)
Again \(\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{2}{r}-\frac{1}{u}=\frac{2 u-r}{r u}\)
\(v=\frac{u r}{2 u-r}\)
\(v_i=-\left(\frac{v}{u}\right)^2 v_o=-v_o\left(\frac{r}{2u-r}\right)^2\)
આ માધ્યમમાં પ્રકાશની ગતિ