\(\therefore v=\frac{d x}{d t}=2 \times 10^{-2} \pi \sin \pi t\)
For the first time, the speed to be maximum,
\(\sin \pi t=1\) or, \(\sin \pi t=\sin \frac{\pi}{2}\)
\(\Rightarrow \pi t=\frac{\pi}{2} \quad\) or, \(t=\frac{1}{2}=0.5 \mathrm{sec}\)
$(A)\;y= sin\omega t-cos\omega t$
$(B)\;y=sin^3\omega t$
$(C)\;y=5cos\left( {\frac{{3\pi }}{4} - 3\omega t} \right)$
$(D)\;y=1+\omega t+{\omega ^2}{t^2}$