Amplitude, \(\mathrm{A}=1 \mathrm{cm}\)
Average velocity in the interval in which body moves from equilibrium to half of its amplitude, \(\mathrm{v}=?\)
Time taken to a displacement \(A/2\) where \(A\) is the amplitude of oscillation from the
mean position \(^{\prime} \mathrm{O}^{\prime}\) is \(\frac{\mathrm{T}}{12}\)
Therefore, time, \(t=\frac{0.5}{12} \mathrm{sec}\)
Displacement, \(s=\frac{A}{2}=\frac{1}{2} c m\)
Average velocity, \(v=\frac{\frac{A}{2}}{t}=\frac{\frac{1}{2}}{\frac{0.5}{12}}=12 \mathrm{cm} / \mathrm{s}\)