Bubble rises to height, \(d=40 m\)
Temperature at a depth of \(40 m , T_{1}=12^{\circ} C =285 K\)
Temperature at the surface of the lake, \(T_{2}=35^{\circ} C =308 K\)
The pressure on the surface of the lake:
\(P_{2}=1 atm =1 \times 1.013 \times 10^{5} Pa\)
The pressure at the depth of \(40 m\)
\(P_{1}=1 atm +d\rho g\) Where \(, \rho\) is the density of
water \(=10^{3} kg / m ^{3} g\) is the acceleration due
to gravity \(=9.8 m / s ^{2}\)
\(\therefore P_{1}=1.013 \times 10^{5}+40 \times 10^{3} \times 9.8=493300 Pa\)
We have: \(\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}\)
Where, \(V_{2}\) is the volume of the air bubble when it reaches the surface \(V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}\)
\(=\frac{(493300)\left(1.0 \times 10^{-6}\right) 308}{285 \times 1.013 \times 10^{5}}\)
\(=5.263 \times 10^{-6}\; m ^{3}\) or \(5.263 \;cm ^{3}\)
Therefore, when the air bubble reaches the surface, its volume becomes \(5.263 \;cm ^{3} .\)
કારણ : $\frac{{{C_P}}}{{{C_V}}} = \gamma $