The path difference when transparent sheet is introduced \(\Delta x=(\mu-1) t\)
If the central maxima occupies position of nth fringe, then \((\mu-1) t=n \lambda=d \sin \theta\)
\(\Rightarrow \sin \theta =\frac{(\mu-1) t }{ d }\)
\(=\frac{(1.17-1) \times 1.5 \times 10^{-7}}{3 \times 10^{-7}}=0.085\)
Therefore, angular position of central maxima \(\theta=\sin ^{-1}(0.085)=4.88^{\circ} \approx 4.9\)
For small angles, \(\sin \theta \approx \theta \approx \tan \theta\)
\(\Rightarrow \quad \tan \theta=\frac{y}{D}\)
\(\therefore \quad \frac{y}{D}=\frac{(\mu-1) t}{d} \Rightarrow y=\frac{D(\mu-1) t}{d}\)