Let initial radius be \(=r\)
Final radius \(=r+200 \%\) of \(r\)
\(=3 r\)
Atmospheric pressure \(=\rho g H\)
Let depth of the lake be \(h\)
So, pressure at the bottom of lake \(=\rho g H+\rho g h\)
Using \(P_1 V_1=P_2 V_2\)
\(\rho g H \times \frac{4}{3} \pi(3 r)^3=(\rho g H+\rho g h) \times \frac{4}{3} \pi r^3\)
\(\rho g H \times \frac{4}{3} \pi \times 27 r^3=(\rho g H) \frac{4}{3} \pi r^3+\rho g h \times \frac{4}{3} \pi r^3\)
Solving this equation we get
\(26 H=h\)
(હવાની ધનતા = $1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ આપેલ છે)