$r_1 \alpha [NO]^2 [O_2]$ અથવા $r_1 \alpha [x]^2 [y] = x^2y$
પાત્રનું અડધું કદ મળવાની સક્રિય દળ બમણુ થશે
$r_1 \alpha [2x]^2[2y] = 8x^2y$
જેથી દર $8$ ગણો વધશે.
ઉપરોક્ત પ્રક્રિયાનો અભ્યાસ $FeSO _4$ ની સાંદ્રતાનું નિરીક્ષણ કરીને $300\,K$ પર કરવામાં આવ્યો હતો, જેમાં પ્રારંભિક સાંદ્રતા $10\,M$ હતી અને અડધા કલાક પછી $8.8\,M$ થઈ ગઈ હતી. $Fe _2\left( SO _4\right)_3$ ના ઉત્પાદનનો વેગ એ $..........\,\times 10^{-6}\,mol\,L ^{-1}\,s ^{-1}$ છે.
${O_3}(g)\, + \,C{l^ * }(g)\, \to \,{O_2}(g) + Cl{O^ * }(g)$ ..... $(i)$ $[{K_i} = 5.2 \times {10^9}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
$Cl{O^ * }(g) + {O^ * }(g)\, \to \,{O_2}(g) + \,C{l^ * }(g)$ ..... $(ii)$ $[{K_{ii}} = 2.6 \times {10^{10}}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
તો સમગ્ર પ્રક્રિયા ${O_3}(g){\mkern 1mu} + {\mkern 1mu} {O^*}(g){\mkern 1mu} \to {\mkern 1mu} 2{O_2}(g)$ માટે સમગ્ર પ્રક્રિયાનો વેગ .......... $L\,\,mo{l^{ - 1}}\,{s^{ - 1}}$ અચળાંક કોની સૌથી નજીક હશે ?