\(\text { So, } \frac{h c}{\lambda}=K_{\max }\)
\(\lambda_{d}=\frac{h}{\sqrt{2 m K_{\max }}} \Rightarrow K_{\max }=\frac{h^{2}}{2 m \lambda_{d}^{2}}\)
\(\left(\frac{h c}{\lambda}\right)=\frac{h^{2}}{2 m \lambda_{d}^{2}} \Rightarrow \lambda=\left(\frac{2 m c}{h}\right) \lambda_{d}^{2}\)
$\left\lfloor{m}_{e}=\text { mass of electron }=9 \times 10^{-31} \,{kg}\right.$
${h}=\text { Planck constant }=6.6 \times 10^{-34} {Js}$
$\left.{k}_{{B}}=\text { Boltzmann constant }=1.38 \times 10^{-23}\, {JK}^{-1}\right]$