From above equation at \(f\) = \(0\) \( \Rightarrow z = \infty \)
When \(f = \frac{1}{{2\pi \sqrt {LC} }}\) (resonant frequency) \( \Rightarrow Z = R\)
For \(f > \frac{1}{{2\pi \sqrt {LC} }} \Rightarrow \) \( Z\) starts increasing.
i.e., for frequency \(0 -\) \(fr\), \(Z\) decreases and for fr to \(\infty\), \(Z\) increases. This is justified by graph \(c\).
$i=[6+\sqrt{56} \sin (100 \pi \mathrm{t}+\pi / 3)] \mathrm{A}$ પ્રવાહનું $rms$ મૂલ્ય. . . . . . .$A$ હશે.