\(\frac{m}{2} \times V_{0}+\frac{m}{3} \times(0)=\frac{m}{2} V_{A}+\frac{m}{3} V_{B}\)
\(=\frac{V_{0}}{2}=\frac{V_{A}}{2}+\frac{V_{B}}{3}\) \(....(1)\)
since, collision is elastic \(( e =1)\)
\(e =1=\frac{ V _{ B }- V _{ A }}{ V _{0}} \Rightarrow V _{0}= V _{ B }- V _{ A } \ldots(2)\)
On solving \((1) \&(2): V_{A}=\frac{V_{0}}{5}\)
Now, \(De-\)Broglie wavelength of \(A\) before collision :
\(\lambda_{0}=\frac{ h }{ m _{ A } V _{0}}=\frac{ h }{\left(\frac{ m }{2}\right) V _{0}}\)
\(\Rightarrow \lambda_{0}=\frac{2 h }{ mV _{0}}\)
Final \(De-\)Broglie wavelength :
\(\lambda_{ f }=\frac{ h }{ m _{ A } V _{0}}=\frac{ h }{\frac{ m }{2} \times \frac{ V _{ o }}{5}} \Rightarrow \lambda_{ f }=\frac{10 h }{ mV _{ o }}\)
Now \(\Delta \lambda=\lambda_{f}-\lambda_{0}\)
\(\Delta \lambda=\frac{10 h }{ mV _{0}}-\frac{2 h }{ mV _{0}}\)
\(\Rightarrow \Delta \lambda=\frac{8 h }{ mv _{0}} \Rightarrow \Delta \lambda=4 \times \frac{2 h }{ mv _{0}}\)
\(\Rightarrow \Delta \lambda=4 \lambda_{0}\)
$E=200\left[\sin \left(6 \times 10^{15}\right) t+\sin \left(9 \times 10^{15}\right) t\right]^{-1}$ જો આ પ્રકાશ $2.50 \,eV$, જેટલું કાર્યવિધેય ધરાવતી ધાતુની ગતિઉર્જા ...........$eV$ હશે. (Given : $h=4.14 \times 10^{-15} \,eVs$)