दिया है, $A = \left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$ $\Rightarrow$ |A| = $ \left|\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right|$
$= 1(15 - 1) - (- 2)(- 10 - 1) + 1(- 2 - 3) = 14 - 22 - 5 = - 13 \neq 0$
$A$ के सहखण्ड निम्न हैं,
$A_{11} = 15 - 1 = 14, A_{12} = -(-10 - 1) = 11, A_{13} = -2 - 3 = -5,$
$A_{21} = -(-10 - 1) = 11, A_{22} = 5 - 1 = 4, A_{23} = -(1 + 2) = -3$
$A_{31 }= (- 2 - 3) = - 5, A_{32 }= - (1 + 2) = - 3, A_{33 }= 3 - 4 = - 1$
$adj (A) = \left[\begin{array}{ccc} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{array}\right]^{T}$ = $\left[\begin{array}{ccc} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{array}\right]$
$\therefore A-1 = \frac{1}{|A|} (adj A) = \frac{1}{-13} \left[\begin{array}{ccc} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{array}\right]= \left[\begin{array}{rrr} -\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{array}\right]$
यहाँ, $adj(A) = \left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]= B ($माना$)$
$\therefore |B| = |adj A| = \left|\begin{array}{ccc} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{array}\right|= 14(- 4 - 9) - 11(- 11 - 15) - 5(- 33 + 20)$
$= - 182 + 286 + 65 = 169 \neq 0$
$B$ के सहखण्ड निम्न हैं
$B_{11 }= (- 4 - 9) = - 13, B_{12 }= - (- 11 - 15) = 26,$
$B_{13 }= (- 33 + 20) = - 13, B_{21 }= - (- 11 - 15) = 26,$
$B_{22 }= - 14 - 25 = - 39, B_{23 }= - (- 42 + 55) = - 13,$
$B_{31 }= (- 33 + 20) = - 13, B_{32 }= - (- 42 + 55) = - 13,$
$B_{33 }= 56 - 121 = -65$
$adj(B) = adj (adj A)=\left[\begin{array}{ccc} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{array}\right]^{\top}$= $\left[\begin{array}{ccc} -13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65 \end{array}\right] $
$ \therefore B^{-1 }= [adj A]^{-1 }= \frac{1}{|\operatorname{adj} A|} {adj(adj A)}$
$\Rightarrow [adj A]^{-1} = \frac{1}{169} \left[\begin{array}{ccc}-13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65\end{array}\right]= \frac{1}{13} \left[\begin{array}{ccc}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]...(i)$
$A-1 $के सहखण्ड निम्न है,
$A11 = \frac{-13}{169}, A12 = \frac{26}{169}, A13 = \frac{-13}{169}$
$A21 = \frac{26}{169}, A22 = \frac{-39}{169}, A23 = \frac{-13}{169}$
$A31 = \frac{-13}{169}, A32 = - \frac{13}{169}, A33 = - \frac{65}{169}$
अब, $adj (A-1) = \left[\begin{array}{ccc} -\frac{13}{169} & \frac{26}{169} & -\frac{13}{169} \\ \frac{26}{169} & -\frac{39}{169} & -\frac{13}{169} \\ -\frac{13}{169} & -\frac{13}{169} & -\frac{65}{169} \end{array}\right]^{T}$= $\left[\begin{array}{ccc} -\frac{13}{169} & \frac{26}{169} & -\frac{13}{169} \\ \frac{26}{169} & -\frac{39}{169} & -\frac{13}{169} \\ -\frac{13}{169} & -\frac{13}{169} & -\frac{65}{169} \end{array}\right]$
$\Rightarrow adj (A-1) = \frac{1}{13} \left[\begin{array}{ccc} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{array}\right] ...(ii)$
समी $(i)$ तथा $(ii)$ से, $adj (A-1) = (adj A)-1$