and \({\lambda _2} = 6216\,\mathop {\text{A}}\limits^o \)
and \(I=3.6 \times 10^{-3}\, \mathrm{Wm}^{-2}\)
Intensity associated with each wavelength
\(=\frac{3.6 \times 10^{-3}}{2}=1.8 \times 10^{-3} \,\mathrm{Wm}^{-2}\)
Work function \(\phi=h v=\frac{h c}{\lambda}\)
\( = \frac{{\left( {6.62 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{\lambda }\)
\(=\frac{12.4 \times 10^{3}}{\lambda} \mathrm{ev}\)
for different wavelengths
\({{\phi _1} = \frac{{12.4 \times {{10}^3}}}{{{\lambda _1}}}\, = \,}\) \({\frac{{12.4 \times {{10}^3}}}{{4972}} = 2.493\,\,{\text{eV}}}\)
\(=3.984 \times 10^{-19}\, \mathrm{J}\)
\({\phi _2} = \frac{{12.4 \times {{10}^3}}}{{{\lambda _2}}}\) \({ = \,\,\frac{{12.4 \times {{10}^3}}}{{6216}} = 1.994\,\,{\text{eV}}}\)
\(=3.184 \times 10^{-19}\, \mathrm{J}\)
Work function for metallic surface \(\phi=2.3\,eV\) (given)
\(\phi_{2}<\phi\)
Therefore, \(\phi_{2}\) will not contribute in this process.
Now, no. of electrons per \(\mathrm{m}^{2}-\mathrm{s}=\) no of photons per \(m^{2}-s\)
no. of electrons per \(m^{2}-s\)
\(=\frac{1.8 \times 10^{-3}}{3.984 \times 10^{-19} \times 10^{-4}}\)
\(\left(\because 1 \mathrm{cm}^{2}=10^{-4} \mathrm{m}^{2}\right)=0.45 \times 10^{12}\)
So, the number of photo electrons liberated in \(2\) sec.
\(=0.45 \times 10^{12} \times 2\)
\(=9 \times 10^{11}\)
વિધાન $-1$ : ડેવીસન-ગર્મરના પ્રયોગે ઇલેક્ટ્રોનની તરંગ પ્રકૃતિ શોધી કાઢી.
વિધાન $-2$ : જો ઇલેક્ટ્રોન તરંગ પ્રકૃતિ ધરાવે તો તેમનું વ્યતિકરણ અને વિવર્તન થઈ શકે.