\(a=100\), \(x=90\), \(t=10\)
તો \({{K}_{1}}=\frac{2.303}{10}\log \frac{100}{10}\) \(K=2.303\times {{10}^{-1}}\,hou{{r}^{-1}}\)
હવે, \( 99.9\%\) પૂર્ણ થવા માટે
\(a= 100\) અને \(x =99.9\)
\(t=\frac{2.303}{{{K}_{1}}}\log \frac{100}{0.1}\) \(=\frac{2.303}{2.303\times {{10}^{-1}}}\times 3=30\) કલાક
$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ તો $\frac{d[NH_3]}{dt}$ અને $\frac{d[H_2]}{dt}$ વચ્ચેનો સમાનતાનો સંબંધ ............ થશે.
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $300\, {~K}$ પર $120$ મિનિટમાં ${PCl}_{5}$ની સાંદ્રતા પ્રારંભિક સાંદ્રતા $50\, mol\,{L}^{-1}$ થી $10\, {~mol} \,{~L}^{-1}$ થી ઘટે છે. $300\, {~K}$ પર પ્રક્રિયા માટે દર અચળાંક ${X}$ $\times 10^{-2} \,{~min}^{-1}$ છે. $x$ ની કિંમત $......$ છે.
$[$ આપેલ છે: $\log 5=0.6989]$
$S{{O}_{2}}C{{l}_{2}}\to S{{O}_{2}}+C{{l}_{2}}$ નો વેગ અચળાંક $2.2 \times 10^{-5}\, s^{-1}$ છે. આ વાયુને $90\, min$ સુધી ગરમ કરતા કેટલા $(\%)$ ટકા $SO_2Cl_2$ નુ વિધટન થશે ?
$CH_3COCH_{3(aq)} + Br_{2(aq)} \rightarrow $$CH_3COCH_2Br_{(aq)} + H^+_{(aq)}+ Br^-_{(aq)}$
નીચેની પ્રક્રિયા સાંદ્રતા પરથી આ ગતિકીય માહિતી મળે છે.
શરૂઆતની સાંદ્રતા, $M$
| $[CH_3COCH_3]$ | $[Br_2]$ | $[H^+]$ |
| $0.30$ | $0.05$ | $0.05$ |
| $0.30$ | $0.10$ | $0.05$ |
| $0.30$ | $0.10$ | $0.10$ |
| $0.40$ | $0.05$ | $0.20$ |
$Br_2$ ના દૂર થવાનો શરૂઆતનો દર $Ms^{-1}$ માં નીચે મુજબ છે.
$5.7 \times 10^{-5} ,$ $5.7 \times 10^{-5} ,$ $1.2 \times 10^{-5} ,$ $3.1 \times 10^{-5}$
આ માહિતીને આધારે વેગ સમીકરણ ...... થશે.