તબક્કો $: I :$ $2A $ $\rightleftharpoons$ $ X $ ઝડપી.
તબક્કો $II :$ $X + B $ $\rightleftharpoons$ $Y$ ધીમી
તબક્કો $III :$ $Y + B$ નીપજ ઝડપી આખી પ્રક્રિયા કયા નિયમ પર આધારિત છે ?
પ્રથમ તબક્કા માટે વેગ \(= [x] = K_1 [A]\)
બીજા તબક્કા માટે વેગ \(= K_2 [X] [B] = K_2 (K_1[A]^2)[B] \)
( \(\because \) સમીકરણ \( (1) \) પરથી) \(=K[A]^2[B] \) જ્યાં \(K = K_1 . K_2\)
વિધાન $I$ : $A+B \rightarrow C$ પ્રક્રિયા માટે વેગ નિયમ, વેગ $(r)=k[A]^2[B]$ છે. જ્યારે $A$ અને $B$ એમ બંને ની સાંદ્રતા બમણી કરવામાં આવે છે ત્યારે પ્રક્રિયા વેગ વધી ને " $x$ " ગણો થાય છે.
વિધાન $II$ :
(Image)
આકૃતિ " " $y$ " ક્રમ પ્રક્રિયા માટે સાંદ્રતામાં તફ઼ાવત સામે સમયનો આલેખ દર્શાંવે છે. $x+y$ નું મૂલ્ય . . . . . છે.
$[X]$ $0.1\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.2\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.3\,M$, $[Y]$ $0.2\,M$ દર $\rightarrow 0.008\,Ms^{-1}$
$[X]$ $0.4\,M$, $[Y]$ $0.3\,M$ દર $\rightarrow 0.018\,Ms^{-1}$
તો દર નિયમ ......