समाकलन का मान ज्ञात कीजिए: $\int_{0}^{\frac{\pi}{4}} \sin^3 2t \ \cos 2tdt$
example-28(4)
Download our app for free and get started
मान लीजिए$, \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \sin^32t \cos 2t dt$
अब $\int \sin^3 2t \cos 2t dt$ पर विचार कीजिए
$\sin 2t = u$ रखने पर $2 \cos 2t dt = du$ अथवा $\cos 2t dt = \frac{1}{2} du$
अतः $\in t\sin^{3 }2t \cos 2t dt =\frac{1}{2} \in t u^{3} d u$
$=\frac{1}{8}\left[u^{4}\right] =\frac{1}{8} \sin ^{4} 2 t = F(t)$ मान लीजिए
इसलिए कलन की द्वितीय आधारभूत प्रमेय से
$\mathrm{I}=\mathrm{F}\left(\frac{\pi}{4}\right) - F(0) $
$=\frac{1}{8}\left[\sin ^{4} \frac{\pi}{2}-\sin ^{4} 0\right] $
$=\frac{1}{8}$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*