\(u_{0}=1.25\, \mathrm{cm} ; M_{\infty}=?\)
From \(\frac{1}{f_{0}}=\frac{1}{v_{0}}-\frac{1}{u_{0}}\)
\(\Rightarrow \frac{1}{1.2}=\frac{1}{v_{0}}-\frac{1}{(-1.25)}\)
\(\Rightarrow \quad \frac{1}{v_{0}}=\frac{1}{1.2}-\frac{1}{1.25}\)
\(\Rightarrow \) \(v_{0}=30\, \mathrm{cm}\)
Magnification at infinity,
\(M_{\infty}=-\frac{v_{0}}{u_{0}} \times \frac{D}{f_{e}}\)
\(=\frac{30}{1.25} \times \frac{25}{3}\) ( \(\because D=25\, \mathrm{cm}\) least distance of distinct vision)
\(=200\)
Hence the magnifying power of the compound microscope is \(200\)