$d\, = \,M\,\left( {\frac{1}{m}\, + \,\frac{{{M_2}}}{{1000}}} \right)\,,\,{M_2}\, = $ Mol. mass of solute
On putting value
$1.252\, = \,3\left( {\frac{1}{m}\, + \,\frac{{58.5}}{{1000}}} \right)$
on solving $m\,=\,2.79$The relation between molarity $(M)$ and molality $(m)$ is
$d\, = \,M\,\left( {\frac{1}{m}\, + \,\frac{{{M_2}}}{{1000}}} \right)\,,\,{M_2}\, = $ Mol. mass of solute
On putting value
$1.252\, = \,3\left( {\frac{1}{m}\, + \,\frac{{58.5}}{{1000}}} \right)$
on solving $m\,=\,2.79$
(પાણી માટે $K_f=1.86\, K\, kg, mol^{-1}$ અને ઇથિલીન ગ્લાયકોલનું આણ્વિય દળ $= 62\, g\, mol^{-1}).$