\(\frac{ dx }{ dt }= v = A \omega \cos (\omega t )\)
\(\frac{ dv }{ dt }= a =-\omega^2 A \sin (\omega t )\)
\(a =-\left(\frac{2 \pi}{8}\right)^2 \times 1 \sin \left(\frac{2 \pi}{8} \times 2\right)\)
\(\Rightarrow a =-\frac{\pi^2}{16} \times \sin \left(\frac{\pi}{2}\right)\)
\(\therefore a =\frac{-\pi^2}{16}\,m / s ^2\)
$\left(g=10 \,{m} / {s}^{2}\right)$