\(\frac{{\log \,\,{K_2}}}{{\log \,\,{K_1}}}\, = \,\frac{{ - \,{E_a}}}{{2.303\,R}}\left( {\frac{1}{{{T_2}}}\, - \,\frac{1}{{{T_1}}}} \right)\)
Given \(\frac{{\log \,\,{K_2}}}{{\log \,\,{K_1}}}\, = 2\) \(T_2\,=\,308\): \(T_1\,=\,298\)
\(\therefore \,\,\log \,\,2\,\, = \frac{{ - \,{E_a}}}{{2.303\, \times 8.314}}\left( {\frac{1}{{308}}\, - \,\frac{1}{{298}}} \right)\)
\({E_a}\, = \,52.9\,\,kJ\,\,mo{l^{ - 1}}\)
(નજીકનાં પૂર્ણાકમાં રાઉન્ડ ઑફ) $\left[ R =8.314\, J \,K ^{-1} \,mol ^{-1}\right]$