\(\frac{{\log \,\,{K_2}}}{{\log \,\,{K_1}}}\, = \,\frac{{ - \,{E_a}}}{{2.303\,R}}\left( {\frac{1}{{{T_2}}}\, - \,\frac{1}{{{T_1}}}} \right)\)
Given \(\frac{{\log \,\,{K_2}}}{{\log \,\,{K_1}}}\, = 2\) \(T_2\,=\,308\): \(T_1\,=\,298\)
\(\therefore \,\,\log \,\,2\,\, = \frac{{ - \,{E_a}}}{{2.303\, \times 8.314}}\left( {\frac{1}{{308}}\, - \,\frac{1}{{298}}} \right)\)
\({E_a}\, = \,52.9\,\,kJ\,\,mo{l^{ - 1}}\)
$A\,\xrightarrow{{{K_1}}}\,B,$ સક્રિયકરણ ઊર્જા ; $Ea_1$
$A\,\xrightarrow{{{K_2}}}\,C,$ સક્રિયકરણ ઊર્જા $Ea_2$
$N{H_2}N{O_{2\left( {aq} \right)}} + OH_{\left( {aq} \right)}^ - \to NHNO_{2\left( {aq} \right)}^ - + {H_2}{O_{\left( l \right)}}$
$NHNO_{2\left( {aq} \right)}^ - \to {N_2}{O_{\left( {aq} \right)}} + OH_{\left( {aq} \right)}^ - $