\(v=+10\, \mathrm{cm}\)
\(\Rightarrow \mathrm{f}=5\,\mathrm{cm}\)
Glass plate shift \(=\mathrm{t}\left(1-\frac{1}{\mu}\right)=1.5\left(1-\frac{2}{3}\right)=0.5\,\mathrm{cm}\)
So, new \(u=10-0.5=9.5\,\mathrm{cm}\)
\(\frac{1}{v}-\frac{1}{u}=\frac{1}{f}\)
\(\frac{1}{v}-\frac{1}{-9.5}=\frac{1}{5}\)
After solving we get,
\(v=\frac{47.5}{4.5}\). Hence, shift \(\frac{47.5}{4.5}-10=\left(\frac{2.5}{4.5}\right)=0.55\, \mathrm{cm}\)