${{{x^2} + 1} \over {(2x - 1)\,({x^2} - 1)}} = $
  • A${{ - 5} \over {3(2x - 1)}} + {3 \over {(x + 1)}} + {1 \over {(x - 1)}}$
  • B${{ - 5} \over {3(2x - 1)}} + {1 \over {3(x + 1)}} + {1 \over {(x - 1)}}$
  • C${1 \over {2x - 1}} + {5 \over {(x + 1)}} - {3 \over {(x - 1)}}$
  • D
    એકપણ નહીં
Easy
Download our app for free and get startedPlay store
b
(b) \({{{x^2} + 1} \over {(2x - 1)\,({x^2} - 1)}} = {A \over {(2x - 1)}} + {B \over {x + 1}} + {C \over {x - 1}}\)

==> \({x^2} + 1 = A({x^2} - 1) + B(2x - 1)\,(x - 1) + C(x + 1)\,(2x - 1)\)

For \(x = 1,\) \(2 = 2C \Rightarrow C = 1\)

For \(x = - 1\), \(2 = 6B \Rightarrow B = {1 \over 3}\)

For \(x = {1 \over 2}\), \({5 \over 4} = - {3 \over 4}A \Rightarrow \)\(A = - {5 \over 3}\)

\(\therefore \) Given expression = \( - {5 \over 3}{1 \over {(2x - 1)}} + {1 \over 3}{1 \over {x + 1}} + {1 \over {x - 1}}\)

art

Download our app
and get started for free

Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*

Similar Questions

  • 1
    $32\root 5 \of 4 $ to the base $2\sqrt 2 = . . . .$
    View Solution
  • 2
    $\sum {{1 \over {1 + {x^{a - b}} + {x^{a - c}}}} = } $
    View Solution
  • 3
    જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
    View Solution
  • 4
    જો ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712$ તો ${3^{12}} \times {2^8}$ માં રહેલા અંકોની સંખ્યા મેળવો.
    View Solution
  • 5
    સમીકરણ $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ નો ઉકેલ મેળવો.
    View Solution
  • 6
    જો ${{{x^3} - 6{x^2} + 10x - 2} \over {{x^2} - 5x + 6}} = f(x) + {A \over {(x - 2)}} + {B \over {(x - 3)}}$, તો $f(x) = $
    View Solution
  • 7
    જો ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, તો $A+B+C+D= . . .$
    View Solution
  • 8
    કોઈ સંખ્યા $\alpha $ માટે ચડતો કર્મ મેળવો.
    View Solution
  • 9
    ${{(x - a)(x - b)} \over {(x - c)(x - d)}} = {A \over {x - c}} - {B \over {(x - d)}} + C$, તો $C = . . .. $
    View Solution
  • 10
    જો ${{{x^2}} \over {({x^2} + {a^2})\,({x^2} + {b^2})}} = k\left( {{{{a^2}} \over {{x^2} + {a^2}}} - {{{b^2}} \over {{x^2} + {b^2}}}} \right)$ તો $k =$
    View Solution