\(\Delta G=\Delta H-T \Delta S\)
when \(\Delta G=0, \Delta H=T \Delta S\)
\(\Delta H=40.63 \mathrm{kJ} \mathrm{mol}^{-1}\)\(=40.63 \times 10^{3} \mathrm{J} \mathrm{mol}^{-1}\)
\(\Delta S=108.8 \mathrm{JK}^{-1} \mathrm{mol}^{-1}\)
\(\therefore \quad T=\frac{\Delta H}{\Delta S}\)\(=\frac{40.63 \times 10^{3}}{108.8}=373.43 \mathrm{K}\)
$(i)\,\,{C_{12}}{H_{22}}{O_{11}}\,\, + \,\,12{O_2}\,\, \to \,\,12\,\,C{O_2}\, + \,\,11{H_2}O,\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - 5200.7\,kJ\,mo{l^{ - 1}} $
$(ii)\,\,C\,\, + \,\,{O_2}\, \to \,\,C{O_2},\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,394.5\,\,kJ\,\,mo{l^{ - 1}}$
$(iii)\,\,{H_2}\,\, + \,\frac{1}{2}{O_2}\,\, \to \,\,\,{H_2}O,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,285.8\,kJ\,\,mo{l^{ - 1}}$
${C_{\left( {graphite} \right)}} + {O_{2\left( g \right)}} \to C{O_{2\left( g \right)}}\,;\,\Delta H = -393.5\,kJ$
${C_2}{H_{4\left( g \right)}} + 3{O_{2\left( g \right)}} \to 2C{O_{2\left( g \right)}} + 2{H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 1410.9\,kJ$
${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}}\,;\,\Delta H = - 285.8\,kJ$
[ઉપયોગ : $\left.{R}=8.3 \,{~J} \,{~mol}^{-1}\, {~K}^{-1}\right]$
${C_4}{H_{10}}_{(g)}\,\, + \,\,\frac{{13}}{2}\,{O_2}_{(g)}\,\, \to \,\,4C{O_2}_{(g)}\,\, + \,\,5{H_2}O(\ell )\,\,\,\,\,\,\,;$
$\,\,\,\,\,\,\Delta H\,\, = \,\, - 2658\,\,KJ$
જો પરિવારને દરરોજ રાંધવા માટે $15000\,KJ$ ઊર્જા જરૂર પડે. તો સીલીન્ડર ......દિવસ સુધી ચાલશે ?