Where \(T\) is surface tension and \(A\) is surface area
\(U _{ i }=\left(\frac{75 \times 10^{-5}}{10^{-2}} \frac{ N }{ m }\right) \times\left[4 \pi\left(1 \times 10^{-2}\right)^{2}\right]\)
\(=75 \times 10^{-3} \times 4 \pi \times 10^{-4}=942 \times 10^{-7}\,J\)
To get final radius of drops by volume conservation
\(\frac{4}{3} \pi R^{3}=729\left(\frac{4}{3} \pi r^{3}\right)\)
\(R=\text { Initial radius }\)
\(r=\text { final radius }\)
\(r=\frac{R}{(729)^{1 / 3}}=\frac{R}{9}=\frac{1}{9}\,cm\)
Final surface energy
\(U _{ f }=729[ TA ]\)
\(=729\left[\frac{75 \times 10^{-5}}{10^{-2}} \frac{ N }{ m }\right] \times\left[4 \pi\left(\frac{1}{9} \times 10^{-2}\right)^{2}\right]\)
\(=729\left[75 \times 10^{-3} \times \frac{4 \pi \times 10^{-4}}{81}\right]\)
\(=9\left[942 \times 10^{-7} J \right]\)
Gain in surface energy
\(\Delta U =9 \times 942 \times 10^{-7}-942 \times 10^{-7}\)
\(=8 \times 942 \times 10^{-7} J =7536 \times 10^{-7}\,J\)
\(=7.5 \times 10^{-4}\,J\)
$\left(g=10\, ms ^{-2}\right)$