$H _2 O ( g ) \rightarrow H _2( g )+\frac{1}{2} O _2( g )$
$2300\,K$ અને $1\,bar$ પર પાણી વિધટનનું ટકાવાર $...............$ છે. (નજીકનો પૂર્ણાંક)
\(P _0[1-\alpha] \quad P _0 \alpha \quad \frac{ P _0 \alpha}{2} \quad \text { partial pr. at eq }\)
\(P _0\left[1+\frac{\alpha}{2}\right]=1\)
\(K _{ p }=\frac{\left( P _{ H _2}\right)\left( P _{ O _2}\right)^{1 / 2}}{ P _{ H _2 O }}\)
\(\frac{\left( P _0 \alpha\right)\left(\frac{ P _0 \alpha}{2}\right)^{1 / 2}}{ P _0[1-\alpha]}=2 \times 10^{-3}\)
since \(\alpha\) is negligible w.r.t 1 so \(P _0=1\) and \(1-\alpha \approx 1\)
\(\frac{\alpha \sqrt{\alpha}}{\sqrt{2}}=2 \times 10^{-3}\)
\(\alpha^{3 / 2}=2^{3 / 2} \times 10^{-3}\)
\(\alpha=2^{3 / 2 \times 2 / 3} \times 10^{-3 \times 2 / 3}\)
\(\alpha=2 \times 10^{-2} \quad \% \alpha=2 \%\)
$2NH_3 + 5/2O_2 $ $\rightleftharpoons$ $ 2NO + 3H_2O, K_1, K_2$ અને $K_3$ ના સંદર્ભમાં ...... થાય.