\(F_{ E }=\frac{k e^{2}}{r^{2}}\) \(...(I)\)
The expression for magnetic force is given by,
\(F_{ M }=\frac{e^{2} V^{2} \mu_{0}}{4 \pi r^{2}}\) \(...(II)\)
Divide equation \((I)\) and \((I).\)
\(\frac{F_{ E }}{F_{ M }}=\frac{\frac{k e^{2}}{r^{2}}}{\frac{e^{2} V^{2} \mu_{0}}{4 \pi r^{2}}}\)
\(=\frac{k 4 \pi}{V^{2} \mu_{0}}\) \(...(III)\)
Substitute \(9 \times 10^9\) for \(k, 4.5 \times 10^{5} m / s\) for \(V\) and \(4 \pi \times 10^{-7}\) for \(\mu_\circ\) in equation \((III).\)
\(\frac{F_{ E }}{F_{ M }}=\frac{9 \times 10^9 \times 4 \pi}{\left(4.5 \times 10^{5} m / s \right)^{2} 4 \pi \times 10^{-7}}\)
\(=4.4 \times 10^{5}\)
$\overrightarrow{\mathrm{F}} =\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})$
$=\mathrm{q} \vec{v} \times\left(\mathrm{B} \hat{i}+\mathrm{B} \hat{j}+\mathrm{B}_{0} \hat{k}\right)$
માં $\mathrm{q}=1,$ $\vec{v}=2 \hat{i}+4 \hat{j}+6 \hat{k}$ અને બળ $\overrightarrow{\mathrm{F}}=4 \hat{i}-20 \hat{j}+12 \hat{k}$
$\vec{B}$નું સંપૂર્ણ સમીકરણ શું હશે?
(પ્રોટોનનું દળ $=1.67 \times 10^{-27}\, kg$, પ્રોટોનનો વિજભાર $=1.69 \times 10^{-19}\,C$)