${S_1} = \frac{1}{2}a{(P - 1)^2}$ and ${S_2} = \frac{1}{2}a\;{P^2}$ $[As\;u = 0$]
From ${S_n} = u + \frac{a}{2}(2n - 1)$
${S_{{{({P^2} - P + 1)}^{th}}}} = \frac{a}{2}\left[ {2({P^2} - P + 1) - 1} \right]$
$ = \frac{a}{2}\left[ {2{P^2} - 2P + 1} \right]$
It is clear that ${S_{{{({P^2} - P + 1)}^{th}}}} = {S_1} + {S_2}$