$\mathop S\limits_{{\text{(2}}{\text{.0}}\,{\text{M)}}} \xrightarrow{{{K_0}}}X$ (zero order)
$\mathop S\limits_{{\text{(2}}{\text{.0}}\,{\text{M)}}} \xrightarrow{{{K_2}}}Y$ (second order)
શૂન્ય કમ અને દ્વિતીય ક્રમની પ્રક્રિયા મુજબ $S$ ની સાંદ્રતા અડધી થવા માટે અનુક્રમે $40\, s$ અને $10\, s$ લાગે છે. તો $K_0 / K_2$ ગુણોતરનું મૂલ્ય શુ થશે ?
જો સંયોજન $[B]$નું બનવું એ પ્રથમક્રમ ગતિકીને અનુસરતું હોય તો, અને $70 \,mins$ પછી $[A]$ ની સાંદ્રતા તેની પ્રારંભિક સાંદ્રતા કરતા અડધી મળી આવેલ છે. પ્રક્રિયાનો વેગ અચળાંક એ $x \times 10^{-6}\, s ^{-1}$ છે. તો $x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં $.....$ છે.
$\mathrm{A}+\mathrm{B} \underset{\text { Step } 3}{\text { Step } 1} \mathrm{C} \xrightarrow{\text { Step } 2} \mathrm{P}$
પ્રથમના વર્તુળ પ્રક્રિયાની માહિતી નીચે સૂચવેલી છે.
સ્ટેપ |
Rate constant $\left(\sec ^{-1}\right)$ |
Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ |
$1$ | ${k}_1$ | $300$ |
$2$ | ${k}_2$ | $200$ |
$3$ | ${k}_3$ | $\mathrm{Ea}_3$ |
ઉપરોક્ત રીતેની પ્રક્રિયાનું વધારણીક વર્તુળ $(k)$ આપવામાં આવે છે. $\mathrm{k}=\frac{\mathrm{k}_1 \mathrm{k}_2}{\mathrm{k}_3}$ અને ઉપરોક્ત વધારણીક તાપ $(E_2)= 400$ કેલ્વિન છે, તો $\mathrm{Ea}_3$ નું મૂલ્ય છે $\mathrm{kJ} \mathrm{mol}^{-1}$ (નજીકની પૂર્ણાંક).