एक पिण्ड सरल आवर्तगति करता है। जब उसका विस्थापन माध्य स्थिति से $4$ सेमी तथा $5$ सेमी हो तो उसका वेग $10$ सेमी/सेकंड तथा $8$ सेमी/सेकंड है, इसका आवर्तकाल होगा $-$
[1991]
Download our app for free and get started
$(c)\ v=\omega \sqrt{a^2-x^2}$
$10=\omega \sqrt{a^2-16}$
$8=\omega \sqrt{a^2-25}$
$\frac{10}{84}=\sqrt{\frac{a^2-16}{a^2-25}} $
दोनों तरफ वर्ग करने पर
$ \frac{26}{16}=\frac{a^2-16}{a^2-25}$
$16 a^2-256=25 a^2-625$
$9 a^2=369$
$a^2=\frac{369}{9} $
समी. $(2)$ में मान रखने पर
$ 10 =\omega \sqrt{\frac{369}{9}-16}$
$10 =\omega \sqrt{\frac{225}{9}}$
$10 =\omega \times \frac{25}{3} $
$\omega=2$ रेडियन/सेकंड
$ T =\frac{2 \pi}{\omega}=\frac{2 \pi}{2} $
$T =\pi$ सेकंड
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
किसी पिण्ड $($वस्तु$)$ के चिकेने क्षैतिज पृष्ठ $($सतह$)$ पर दोलनों के समीकरण को $X=A \cos (\omega t)$ द्वारा निरूपित किया जाता है, जहां $X=t$ समय पर विस्थापन $\omega=$ दोलनों की आवृत्ति तो, $t$ के साथ $a$ के विचलन $($परिवर्तन$)$ को कौन $-$ सा ग्राफ $($आलेख$)$ सही रूप में दर्शाता है ?
दो सरल आवृत्तगति एक दूसरे के लम्बवत् है अर्थात् एक $x - $ अक्ष में तथा दूसरा $y-$ अक्ष में है। यदि दोनों का आयाम समान तथा कलान्तर $\pi / 2$ हो तो पथ होगा $-$
एक सरल लोलक का आयाम वास्तविक आयाम का $1 /$ 3 भाग हो जाता है जब वह 100 दोलन पूरे कर लेता है। जब वह 200 दोलन पूरे कर लेता है तो उसका आयाम $S$ भाग हो जाता है जहां $S$ का मान होगा-
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक 200 न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये?( मान लो $g =10$ मी $/$ से $^2$ )
दो तरंगों को क्रमशः $y _1= a \sin (\omega t + kx +0.57) m$ तथा $y _2= a \cos (\omega t + kx ) m,$ से निरूपित किया जाता है, जहाँ $x$ मीटर में और $t$ सैकण्ड में है, तो दोनों तरंगों के बीच कलान्तर है:
एक कण का द्रव्यमान $m$ है। इसे विराम अवस्था से मोचित किया गया है और यह आरेख मे दिखाये गये अनुसार एक परवलीय मार्ग पर चलता है। यह मानते हुए कि कण का मूल स्थिति से विस्थापन कम है, कौन से ग्राफ कण की स्थिति को समय के फलन के रूप में सही दर्शाता है?