एक सरल लोलक एक क्षैतिज दिशा में ' $a$ ' त्वरण से चलती हुई ट्राली की छत से लटका है। उसका आवर्तकाल $T =2 \pi \sqrt{\frac{\ell}{ g }}$ से दिया जाता है जहां $g$ का मान होगा
[1991]
Download our app for free and get started
(d) परिणामी त्वरण का मान $\sqrt{ a ^2+ g ^2}$ होगा।
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक स्प्रिंग से लटके द्रव्यमान का आवर्तकाल $T$ है। यदि स्प्रिंग को चार बराबर भागों में बांट दिया जाए व समान द्रव्यमान को किसी एक भाग से लटकाये तो आवर्तकाल होगा :
एक $m$ द्रव्यमान का पिण्ड ऊर्ध्वाधरत सरल: आवर्तगति करता है। जब द्रव्यमान को स्प्रिंग $A$ से लटकाया जाता है तो उसका आवर्तकाल $t_1$ तथा $B$ से लटकाने पर आवर्तकाल $t _2$ है। यदि $A$ तथा $B$ को दिये गये चित्र की तरह जोड़ा जाए तो आवर्तकाल $t _0$ दिया जाता है
दो तरंगों को क्रमशः $y _1= a \sin (\omega t + kx +0.57) m$ तथा $y _2= a \cos (\omega t + kx ) m,$ से निरूपित किया जाता है, जहाँ $x$ मीटर में और $t$ सैकण्ड में है, तो दोनों तरंगों के बीच कलान्तर है:
किसी नगण्य द्रव्यमान के स्प्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा
दो सरल आवृत्तगति एक दूसरे के लम्बवत् है अर्थात् एक $x - $ अक्ष में तथा दूसरा $y-$ अक्ष में है। यदि दोनों का आयाम समान तथा कलान्तर $\pi / 2$ हो तो पथ होगा $-$
एक कण पर दो सरल आवर्तगतियां है। ये है$x = A \cos (\omega t +\delta) ; y = A \cos (\omega t +\alpha)$ जब $\delta=\alpha+\frac{\pi}{2}$, तो परिणामी गति होगी $-$