किसी नगण्य द्रव्यमान के स्प्रिंग से लटकाये गये $M$ द्रव्यमान का दोलनकाल $T$ है। यदि इसके साथ ही एक अन्य $M$ द्रव्यमान लटका दिया जाय तो दोलनकाल हो जायेगा
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक बिन्दु सरल आवर्त दोलन करता है जिसका आवर्तकाल $T$ और चलन का समीकरण $x = a \sin (\omega t +\pi / 6)$ है। आवर्तकाल के किस अंश के पश्चात् बिन्दु का वेग उसके अधिकतम वेग का आधा होगा ?
एक कण आयाम $a$ के साथ सरल आवर्ती दोलन करता है। इसका दोलनकाल $T$ है। इस कण को अपनी साम्य अवस्था से आयाम की आधी दूरी चलने में लगने वाला कम से कम समय होगा $-$
किसी कण को प्रदर्शित करने वाले निम्नलिखित फलनों में कौन से फलन सरल आवर्त गति को निरूपित करते है?
(A) $y=\sin \omega t-\cos \omega t$
(B) $y=\sin ^3 \omega t$
(C) $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
(D) $y =1+\omega t +\omega^2 t ^2$
एक सरल लोलक का आयाम तथा कोणीय वेग क्रमशः $a$ तथा $\omega$ है। माध्य स्थिति से $x$ दूरी पर इसकी गतिज ऊर्जा $T$ तथा स्थितिज ऊर्जा $V$ है तो $T$ तथा $V$ का अनुपात होगा