અહીં, ઉષ્મા \({\text{H = }}{{\text{P}}_{\text{1}}}{{\text{t}}_{\text{1}}}{\text{ = }}{{\text{P}}_{\text{2}}}{{\text{t}}_{\text{2}}}{\text{ = (}}{{\text{P}}_{\text{1}}}{\text{ + }}{{\text{P}}_{\text{2}}}{\text{)t}}\,\) તથા \({P_1}\, = \,\,\frac{H}{{{t_1}}}\,\,\) તથા \({P_2}\, = \,\,\frac{H}{{{t_2}}}\)
\(\therefore \,\,t\,\, = \,\,\frac{H}{{{P_1} + {P_2}}}\,\,\)
\( = \,\,\frac{H}{{\frac{H}{{{t_1}}} + \frac{H}{{{t_2}}}}}\)
\( = \,\,\frac{1}{{\frac{1}{{{t_l}}} + \frac{1}{{{t_2}}}}}\,\, = \,\,\frac{{{t_1} \times {t_2}}}{{{t_1} + {t_1}}}\)
\( = \,\,\frac{{10 \times 15}}{{10 + 15}}\,\, = \,\,6\,\,\) મિનિટ