\(35^o+79^o-\mathrm{A}=40^o\) \(\therefore \quad \mathrm{A}=74^o\)
But \(\mu = \frac{{\sin \left( {\frac{{{\text{A}} + {\delta _{\text{m}}}}}{2}} \right)}}{{\sin {\text{A}}/2}}\) \( = \frac{{\sin \left( {\frac{{74 + {\delta _{\text{m}}}}}{2}} \right)}}{{\sin \frac{{74}}{2}}}\)
\( = \frac{5}{3}\sin \left( {{{37}^o} + \frac{{{\delta _{\text{m}}}}}{2}} \right)\)
\(\mu_{\max }\) can be \(\frac{5}{3}\). That is \(\mu_{\max }\) is less than \(\frac{5}{3}=1.67\)
But \(\delta_{\mathrm{m}}\) will be less than \(40^o\) so
\(\mu < \frac{5}{3}\sin {57^o}\) \( < \frac{5}{3}\sin {60^o}\) \( \Rightarrow \mu = 1.45\)