\(n =\) initial frequency
\(\omega=2 \pi n\)
Initial kinetic energy is
\(K _{ i }=\frac{1}{2} I \omega^2=\frac{1}{2} I \times 2 \pi n \times 2 \pi n\)
\(K _{ i }=2 I \pi^2 n ^2\)
When frequency is double to the initial frequency, the the kinetic energy will be
\(K _{ f }=\frac{1}{2} I \omega^2=\frac{1}{2} I \times 4 \pi n \times 4 \pi n\)
\(K _{ f }=8 I \pi^2 n ^2\)
By work-energy theorem,
\(W = K _{ f }- K _{ i }\)
\(W =8 I \pi^2 n ^2-2 I \pi^2 n ^2=6 I \pi^2 n ^2\)
$\left(g=10 \,m / s ^{2}\right.$ નો ઉપયોગ કરો.)