It means it is a first order reaction (because unit of rate constant is \(\sec^{-1}\))
For first order reaction \(K = \frac{1}{t}\ln \frac{a}{{a - x}}\)
\(Kt = \ln \frac{a}{{a - x}} = \ln \frac{{{{[{N_2}{O_5}]}_0}}}{{{{[{N_2}{O_5}]}_t}}}\)
(આપેલ : એન્ટીલોગ $antilog$ $0.125=1.333$,
$\text { antilog } 0.693=4.93 \text { ) }$
(નજીકના પૂર્ણાંકમાં રાઉન્ડ ઑફ) (ધારી લો : $\ln 10=2.303, \ln 2=0.693$)
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ (પ્રક્રિયા $1)$
$\mathrm{P} \rightarrow \mathrm{Q}$ (પ્રક્રિયા $2$)
પ્રક્રિયા $1$ : પ્રક્રિયા $2$ ના અર્ધં આયુષ્ય નો ગુણોત્તર $5: 2$ છે. પ્રક્રિયા $1$ અને પ્રક્રિયા $2$ ને $2 / 3^{\text {dd }}$ and $4 / 5^{\text {dd }}$ પૂર્ણ થવા માટે લાગતા સમયને અનુક્રમે $t_1$ અને $t_2$ તરીકે રજૂ કરવા આવે તો $t_1: t_2$ ગુણોત્તર નું મૂલ્ય ........... $\times 10^{-1}$ છે. (નજીક નો પૂર્ણાક)
[આપેલ : $\log _{10}(3)=0.477$ અને $\log _{10}(5)=0.699$ ]
$\mathop S\limits_{{\text{(2}}{\text{.0}}\,{\text{M)}}} \xrightarrow{{{K_0}}}X$ (zero order)
$\mathop S\limits_{{\text{(2}}{\text{.0}}\,{\text{M)}}} \xrightarrow{{{K_2}}}Y$ (second order)
શૂન્ય કમ અને દ્વિતીય ક્રમની પ્રક્રિયા મુજબ $S$ ની સાંદ્રતા અડધી થવા માટે અનુક્રમે $40\, s$ અને $10\, s$ લાગે છે. તો $K_0 / K_2$ ગુણોતરનું મૂલ્ય શુ થશે ?
[અહી આપેલ $\left.\log _{10} 2=0.3010\right]$