vapour pressure of $B=P_B^o$
In first solution,
Mole fraction of $A\,({x_A})\, = \,\frac{1}{{1 + 2}}\, = \,\frac{1}{3}$
Mole fraction of $B\,({x_B})\, = \,\frac{2}{{1 + 2}}\, = \,\frac{2}{3}$
According to Raoult's law,
Total vapour pressure
$ = \,250\, = \,P_A^o{x_A}\, + \,P_B^o{x_B}$
$\,250\, = \,\frac{1}{3}P_A^o + \,\frac{2}{3}P_B^o$ ....... $(i)$
In second solution
Mole fraction of $A\,({x_A})\, = \,\frac{2}{{2\, + \,2}}\, = \,\frac{2}{4}\, = \frac{1}{2}$
Mole fraction of $B({x_B})\,\, = \,\frac{2}{4}\, = \frac{1}{2}$
$\therefore $ Total vapour pressure
$ = \,300\, = \,P_A^o{x_A}\, + \,P_B^o{x_B}$
$300\, = \,\frac{1}{2}P_A^o\, + \,\frac{1}{2}P_B^o$ ..... $(ii)$
Multiplying equation $(i)$ by $\frac {1}{2}$ and equation $(ii)$ by $\frac {1}{3}$
$\frac{1}{6}P_A^o\, + \,\frac{2}{6}P_B^o\, = \,125$
$\frac{1}{6}P_A^o\, + \,\frac{1}{6}P_B^o\, = \,100$
$\frac{1}{6}P_B^o\, = \,25$
$P_B^o\, = \,25\, \times \,6\, = \,150\,mm\,Hg$
On substituting value of $P_B^o$ in equation $(ii)$ we get
$300\, = \,P_A^o\, \times \,\frac{1}{2}\, + \,150\, \times \frac{1}{2}$
$\,P_A^o\, = \,450\,mm\,Hg$
(પાણી માટે $K_f =1.86\, K\, kg\,mol^{-1}$ છે )