ऊँचाई पर स्थिति एक प्लेटफार्म (चबूतरे) से, $t =0$ समय पर एक बॉल (गेंद) विरामावस्था से गिराई जाती है। $6 s$ के बाद, उसी प्लेटफार्म से एक अन्य बॉल $v$ की चाल से नीचे की ओर गिराई जाती है। दोनो बॉल $t =18 s$ पर मिल जाती हैं। $v$ का मान होगा?( $g$ का मान $10 m / s ^2$ लीजिये)
[2010]
Download our app for free and get started
(a) पहले बॉल द्वारा 18 सेकण्ड में तय की गई दूरी $=$ दूसरे बॉल द्वारा $12 s$ में तय की गई दूरी अब $18 s$ में पहले बॉल द्वारा तय की गई दूरी $=\frac{1}{2} \times 10 \times 8^2=90 \times 18=1620 m$
$12 s$ में दूसरे बॉल द्वारा तय की गई दूरी
$
\begin{aligned}
& = ut +\frac{1}{2} gt ^2 \\
& \therefore \quad 1620=12 v +5 \times 144 \\
& \Rightarrow \quad v =135-60=75 ms ^{-1}
\end{aligned}
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
एक कण अचर त्वरण के साथ एक सीधी रेखा पर चल रहा है। गति पथ में एक स्थान पर $t$ सैकण्ड में 135 मीटर दूरी चलने पर इसका वेग $10 ms ^{-1}$ से $20 ms ^{-1}$ हो जाता है। $t$ का मान होगा:
$x$-अक्ष की दिशा में गतिमान एक कण के समय $t$ पर त्वरण $f$ को $f = f _0\left(1-\frac{ t }{ T }\right)$, समीकरण द्वारा व्यक्त किया जा सकता है, जबकि $f _0$ और $T$ नियतांक हैं। $t=0$ पर इस कण का वेग शून्य है। समय $t=0$ और उस क्षण के बीच अन्तराल में जबकि $f =0$ होगा, कण का वेग $\left( v _{ x }\right)$ होगा-
एक कार एक सीधी सड़क पर एक समान त्वरण से चलती है। यह दो बिन्दुओं $P$ तथा $Q$ से 30 किमी/घंटा तथा 40 किमी/घंटा से गुजरती है। P तथा Q कुछ दुरी पर है। तो $P$ तथा $Q$ के मध्य बिन्दु पर कार का वेग है-
एक गेंद को ऊर्ध्वाधरतः ऊपर फेंका गया। जब यह अपनी अधिकतम ऊँचाई के आधे पर पहुँचती है तो इसकी वेग 10 मी/सेकंड होती है। गेंद कितनी ऊपर जायेगी? [ $g =10$ मी/सेकंड $\left.{ }^2\right]$
एक मोटर गाड़ी $X$ से $Y$ तक अचर चाल $v _{ u }$ से चलती है और $Y$ से $X$ तक अचर चाल $v _{ d }$ से वापस आती है। इस पूरी यात्रा के लिये गाड़ी की औसत चाल होगी :