एक मोटर गाड़ी $X$ से $Y$ तक अचर चाल $v _{ u }$ से चलती है और $Y$ से $X$ तक अचर चाल $v _{ d }$ से वापस आती है। इस पूरी यात्रा के लिये गाड़ी की औसत चाल होगी :
[2007]
Download our app for free and get started
(b)
माना कि कण का पथ $X$-अक्ष के साथ $\theta$ कोण बनाता है। बगल के चित्रानुसार,
$
\begin{aligned}
\tan \theta & =\frac{ AB }{ OB } \\
& =\frac{3}{\sqrt{3}}=\sqrt{3} \\
\therefore \theta & =\tan ^{-1}(\sqrt{3})=60^{\circ}
\end{aligned}
$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
किसी कण का समय $t$ के साथ विस्थापन $(x)$ इस प्रकार है: $x = ae ^{-\alpha t }+ be ^{-\beta t }$, जहाँ $a , b , \alpha$ और $\beta$ धनात्मक नियतांक हैं। कण का वेग
एक कण अचर त्वरण के साथ एक सीधी रेखा पर चल रहा है। गति पथ में एक स्थान पर $t$ सैकण्ड में 135 मीटर दूरी चलने पर इसका वेग $10 ms ^{-1}$ से $20 ms ^{-1}$ हो जाता है। $t$ का मान होगा:
एक पत्थर ऊर्ध्वाधरतः ऊपर की ओर फेंका गया। जब यह उच्चतम ऊंचाई की आधी ऊंचाई पर है तो इसका वेग 10 मी/सेकंड है। उच्चतम ऊंचाई क्या होगी? $g =10$ मी/सेकंड ${ }^2$
एक पिण्ड को एक टॉवर के शिखर से छोड़ा गया। यह यात्रा के अंतिम दो सेकण्डों में 40 मी. चलता है। तो टॉवर की ऊंचाई होगी $\left( g =10\right.$ मी/सेकंड $\left.{ }^2\right)$
एक गेंद को ऊर्ध्वाधरतः ऊपर फेंका गया। जब यह अपनी अधिकतम ऊँचाई के आधे पर पहुँचती है तो इसकी वेग 10 मी/सेकंड होती है। गेंद कितनी ऊपर जायेगी? [ $g =10$ मी/सेकंड $\left.{ }^2\right]$