एक कार एक सीधी सड़क पर एक समान त्वरण से चलती है। यह दो बिन्दुओं $P$ तथा $Q$ से 30 किमी/घंटा तथा 40 किमी/घंटा से गुजरती है। P तथा Q कुछ दुरी पर है। तो $P$ तथा $Q$ के मध्य बिन्दु पर कार का वेग है-
[1988]
Download our app for free and get started
(c) माना $PQ = x$
$
a=\frac{(40)^2-(30)^2}{2 x }=\frac{350}{ x }\left[\because v ^2= u ^2+2 as \right]
$
माना मध्य बिन्दु पर वेग $v$ है।
$
v ^2-30^2=\frac{2 \times 350 \times x }{ x }
$
$v =25 \sqrt{2}$ किमी/घंटा
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
पृथ्वी तल से 5 मीटर ऊंचाई पर स्थित एक टोटी से पानी की बूंदें बराबर समयान्तर पर गिरती है। पानी की तीसरी बूंद टोटी से तब निकलती है जब पहली बूंद पृथ्वी तल को छूती है। इस क्षण दूसरी बूंद पृथ्वी तल से कितनी ऊंचाई पर है? $( g =10$ मी/सेकंड 2$)$
एक पत्थर शून्य वेग से एक टॉवर के शिखर से छोड़ने पर यह पृथ्वीतल पर 5 सेकंड में पहुंचता है। खम्बे की ऊंचाई $\left( g =10\right.$ मी/सेकंड $\left.{ }^2\right)$
$x$-अक्ष की दिशा में गतिमान एक कण के समय $t$ पर त्वरण $f$ को $f = f _0\left(1-\frac{ t }{ T }\right)$, समीकरण द्वारा व्यक्त किया जा सकता है, जबकि $f _0$ और $T$ नियतांक हैं। $t=0$ पर इस कण का वेग शून्य है। समय $t=0$ और उस क्षण के बीच अन्तराल में जबकि $f =0$ होगा, कण का वेग $\left( v _{ x }\right)$ होगा-
किसी कण का समय $t$ के साथ विस्थापन $(x)$ इस प्रकार है: $x = ae ^{-\alpha t }+ be ^{-\beta t }$, जहाँ $a , b , \alpha$ और $\beta$ धनात्मक नियतांक हैं। कण का वेग
एक ट्रेन की लम्बाई 150 मी. है। यह उत्तर दिशा में 10 मी./सेकंड के वेग से चलती है। एक तोता 5 मी./सेकंड से दक्षिण दिशा में रेलमार्ग के समान्तर उड़ता है। कितने समय में तोता ट्रेन को पार कर जाएगा।
$x$-अक्ष पर किसी कण का समय $t$ के संदर्भ में निर्धारित स्थान $x$, समीकरण $x=9 t ^2- t ^3$ द्वारा व्यक्त किया जा सकता है, जबकि $x$ मी में तथा $t$ सेकेण्ड में है। $+x$ दिशा में कण का स्थान क्या होगा, जब उसकी चाल उच्चतम होगी?